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Abstract
An integral approach is presented in the theory of surface electromagnetic waves
propagating along the plane interface of bianisotropic non-absorbing media
including optically active gyrotropic and bigyrotropic ones. This approach
gives a uniform way of obtaining the dispersion equation for surface polaritons
for an arbitrary cut section of the bianisotropic crystals and allows us to establish
the existence conditions of surface polaritons. An example of application of
this approach for the boundary of bianisotropic and isotropic media is given.

PACS number: 78.68.+m

1. Introduction

In recent years optical properties of new non-traditional materials such as photonic crystals,
composites, etc have been widely investigated [1–3]. Light propagation in anisotropic
gyrotropic and bianisotropic media is of interest as well. Optical effects in such media,
which are not observable in the usual isotropic materials, can be used for construction of
new or improved opto-electronic devices. Material anisotropy and bianisotropy under certain
conditions can noticeably affect characteristics of both body and surface electromagnetic
waves.

It is known that surface electromagnetic waves (surface polaritons) can exist in isotropic
media when one of these has a negative dielectric permittivity. Such surface excitations
are well studied [4–6]. As a rule the dielectric permittivity is negative when materials are
excited near critical frequencies and strong dispersion takes place. However in papers [7, 8]
it was shown that surface modes of a fundamentally new type are possible in media with positive
dielectric permittivities and small frequency dispersion. It is important that the existence of
such waves results from anisotropy in at least one of the contacting media. In addition dielectric
permittivities should be chosen carefully, for instance 0 < εo < ε′ < εe for the interface
of a uniaxial crystal with permittivities εo, εe and isotropic medium with permittivity ε′.
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A specific feature of such surface polaritons is their inability to propagate in certain directions
along the interface. The range of the allowed propagation directions is represented by sectors
coplanar to the interface. It is significant that the higher the degree of anisotropy of the
contacting media, the larger the angular width of the sectors of the allowed propagation
directions for surface polaritons.

Taking into account medium anisotropy considerably complicates the bulk of calculations
in the theory of surface waves. For surface acoustical waves in anisotropic media, Barnett
and Lothe [9, 10] developed a special integral approach. They use it to obtain some
qualitative results (existence theorems), which allow us to establish the possibility of surface
wave propagation along any given direction at the interface and for any cut section of the
crystal. Such an approach is also applicable to the theory of surface polaritons. For
non-magnetic non-gyrotropic anisotropic media, the theory has been developed in papers
[11, 12].

The purpose of the present paper is to extend the integral approach to bianisotropic
media including optically active gyrotropic and bigyrotropic ones [13]. Surface polaritons of
microwave and infra-red spectral bands in such media are an object of intensive theoretical
and experimental studies [14, 15]. In our paper the system of wave equations in Stroh
form [16] is obtained for the first time for homogeneous and inhomogeneous waves in
stratified bianisotropic media. Integral representation for the surface impedance tensors of
contacting media is then derived. With the use of these tensors, one can uniformly derive
the dispersion equations for surface polaritons at an arbitrary cut section of the contacting
media. These equations are represented in the form F(ω/ck) = 0 with a monotonic function
F, and existence of their solutions can be analysed comparatively simply. Note that the
algorithm proposed by us for derivation of the dispersion equations can be programmed
analytically (using the systems of computer algebra) with the material tensors of media as
input data.

The paper is organized as follows. In section 2 we consider wave propagation in a
stratified one-dimensional bianisotropic medium. Starting from Maxwell equations we derive
the system of the first-order differential equations for vectors

(
Hτ

q × E

)
. There are different

forms of representation of such equations [17, 18]. We obtain the system of equations in
Stroh form [16] with the use of tensorial bilinear forms (uv) with two vector arguments.
It appears that the equations obtained are convenient for further analysis of surface wave
propagation. In section 3 two procedures for deriving the dispersion equation for surface
electromagnetic waves are presented. The first one is conventional and based on solving
the Fresnel equation and boundary conditions. The second one is based on the surface
impedance tensor formalism. In section 4 integral representation of the surface impedance
tensors is given on the basis of eigenvalue and eigenvector analysis for the system matrix
obtained in section 2. Finally, in section 5 with the use of the presented integral formalism we
consider an example of the dispersion equation derivation for surface waves at the interface of
isotropic medium and bianisotropic crystals with symmetry 3 m, 4 mm or 6 mm. Crystals of
these symmetry classes are described by constitutive equations more complicated than those
for bi-isotropic media but simpler than those for bianisotropic crystals of other symmetry
classes.

During derivation of the main formulae we use Fedorov’s covariant methods [19, 20],
and the following notation of operations with scalars, vectors and tensors are used. The
scalar product of the vectors is marked as ab, vector product as a × b and tensor product
(also termed dyadic product or dyad) as a ⊗ b. In some formulae the operation of scalar by
vector multiplication is marked by a dot. For example, the form a · bc means that vector a is
multiplied by a quantity, which equals the scalar product of vectors b and c.
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2. Wave equations in Stroh form for bianisotropic media

Propagation of the monochromatic electromagnetic waves in inhomogeneous bianisotropic
media is described by Maxwell’s equations

∇×E = iω

c
B ∇×H = − iω

c
D (1)

and by constitutive equations

D = εE + αH B = βE + µH (2)

or in an equivalent form

E = ε−1D − α̂H B = β̂D + µ̂H (3)

where α̂ = ε−1α, β̂ = βε−1, µ̂ = µ − βε−1α.
Tensors ε = ε(ω), µ = µ(ω), α = α(ω), β = β(ω) in equations (2) depend on the wave

frequency ω and the position vector r.
For non-absorbing bianisotropic media ε+ = ε, µ+ = µ, β+ = α, where the superscript

+ marks the Hermitian conjugate operation. In equations (1) ∇× is the antisymmetric tensor
called a dual to the vector ∇ (for any vector v the dual tensor equals (v×)ik = eijkvj [19, 20]
where eijk is the Levi-Civita pseudotensor).

We consider stratified bianisotropic medium, for which the tensors ε, µ, α and β depend
on spatial coordinate z = qr only. Here q is the unit vector directed along the z axis (normal
to the stratification planes). Let us present spatial dependence of the field vectors as

{E(r), D(r), H(r), B(r)} = {E(z), D(z), H(z), B(z)} exp(ikbr) (4)

where the unit vector b determines the propagation direction of the wave along the stratification
planes, k being the wave number.

Then rotors ∇× in (1) can be replaced by the differential tensor operator q×d/dz + ikb×.
Taking into account (2) the wave equations are presented in the form

1

ik
q× dE

dz
= νβE + νµH − b×E (5)

1

ik
q× dH

dz
= −νεE − ναH − b×H (6)

where ν ≡ ω/(ck) is the so-called dimensionless reduced frequency [12].
In equations (5) and (6) there are only two independent components of each of the

vectors E and H , and all the remaining components of these vectors can be expressed in
terms of them. Let us transform these equations so that they contain only the tangential
components of E and H (the projections of these vectors on the stratification planes). For
this purpose we define a projective operator I = 1 − q ⊗ q = −q×2 with the properties
I 2 = I, Iq = qI = 0, Iq× = q×I = q×, where 1 is a unit tensor in three-dimensional space.
Then the tangential components of the vector fields are equal to Eτ = IE, Hτ = IH and
relations Eτ = IEτ , Hτ = IHτ are valid. The decomposition of vector H into tangential
and normal components is given by the formula

H = (I + q ⊗ q)H = Hτ + q · qH. (7)

Similar decomposition exists for vector E. The system equivalent to (5) and (6) is obtained
as follows: the first equation is the sum of equations (5) and (6) multiplied from the left by
tensor β̂, and the second one is equation (6) multiplied from the left by tensor ε−1. Taking
into account (7) we have
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1

ik

d(q × E)

dz
+

1

ik
β̂q× dHτ

dz
= ρIHτ + ρq · qH − b×E (8)

1

ik
ε−1q× dHτ

dz
= −τIHτ − τq · qH − νE (9)

where

ρ = νµ̂ − β̂b× τ = ε−1b× + να̂. (10)

Now we multiply equation (8) from the left by vector q, and equation (9) by vector a ≡ b × q

1

ik
qβ̂q× dHτ

dz
= qρIHτ + qρq · qH + aE

1

ik
aε−1q× dHτ

dz
= −aτIHτ − aτq · qH − νaE

whence it follows that the normal component of field H is equal to

qH = 1

ikr
qθq× dHτ

dz
− 1

r
(aτI − νqρI)Hτ (11)

where

θ = b×ε−1 − νβ̂ (12)

r = aτq − νqρq = aε−1a + νaα̂q + νqβ̂a − ν2qµ̂q. (13)

Scalar multiplying equation (9) by vector q and taking into consideration equation (11) gives
an expression for the scalar product of vectors q and E ≡ νE as a function of Hτ and dHτ /dz:

qE = − 1

ik

(
qε−1q×I +

1

r
qτq ⊗ qθq×I

)
dHτ

dz
−

[
qτI − 1

r
qτq ⊗ (aτI − νqρI)

]
Hτ .

(14)

Vector product q × E is found by multiplying equation (9) from the left by tensor Iq×

and is represented by a formula similar to (14) with replacement of the factors q on the left in
each member of (14) by Iq×:

q × E = − 1

ik

(
Iq×ε−1q×I +

1

r
Iq×τq ⊗ qθq×I

)
dHτ

dz

−
[
Iq×τI − 1

r
Iq×τq ⊗ (aτI − νqρI)

]
Hτ . (15)

An additional equation that links vectors d(q × E)/dz, dHτ /dz and Hτ is obtained from (8)
by multiplication from the left by tensor νI :

1

ik

d(q × E)

dz
+

ν

ik
I β̂q× dHτ

dz
= νIρIHτ + νIρq ⊗ qH − a ⊗ qE. (16)

In equation (16) it is taken into account that Ib× = −q×(q×b×) = −q×b ⊗ q = a ⊗ q. After
substitution of (11) and (14) this equation takes the form

1

ik

d(q × E)

dz
= 1

ik

[
Iθq×I +

1

r
(Ib×τq + νIρq) ⊗ qθq×I

]
dHτ

dz

+

[
Ib×τI + νIρI − 1

r
(Ib×τq + νIρq) ⊗ (aτI − νqρI)

]
Hτ . (17)

Equations (15) and (17) for Hτ (z), q × E(z) are equivalent to basic equations (5) and
(6) for H(z), E(z). After substitution of tensors ρ, τ (10), θ (12) and scalar quantity r (13)
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coefficients before dHτ /dz and Hτ in these equations are bulky. However equations (15) and
(17) can be written in a more compact way if we use the following tensorial bilinear form
(uv) of arbitrary vector arguments u and v:

(uv) = Iu×ε−1v×I + νIu×α̂I · bv − νbu · I β̂v×I + ν2bu · bv · I µ̂I

− 1

r
(Iu×ε−1a + νIu×α̂q − νbu · I β̂a + ν2bu · I µ̂q) ⊗ (aε−1v×I

+ νqβ̂v×I + νaα̂I · bv − ν2qµ̂I · bv). (18)

Then

q × E = − 1

ik
(qq)

dHτ

dz
− (qb)Hτ

1

ik

d(q × E)

dz
= 1

ik
(bq)

dHτ

dz
+ (bb)Hτ . (19)

Tensors (uv) (18) are planar, since (uv)q = q(uv) = 0. In orthonormal basis b, q, a they
are represented by a 3 × 3 matrix of the type


a11 0 a13

0 0 0

a31 0 a33


 .

Note that for non-absorbing bianisotropic media the relation (uv)+ = (vu) is valid.
For the tensorial bilinear form of type (18), there is no inverse tensor in three-

dimensional space; however, it can be inverted in a two-dimensional subspace orthogonal
to q. The corresponding operation is called pseudoinversion, and pseudoinverse tensor (uv)−

is introduced according to formula (uv)−(uv) = (uv)(uv)− = I . The projective operator I
is the operator of identical transformation in the two-dimensional subspace. Multiplying the
first equation (19) from the left by (qq)− we find the derivative dHτ /dz and then exclude
it from the second equation. As a result we can write the system of wave equations in the
following block-matrix form:

dU(z)

dz
= ikN(z)U(z) U =

(
Hτ

q × E

)
N =

(
N11 N12

N21 N22

)
(20)

where tensorial elements of a block 6 × 6 matrix N assume the form

N11 = −(qq)−(qb) N12 = −(qq)−

N21 = −[(bq)(qq)−(qb) − (bb)] N22 = −(bq)(qq)−.
(21)

In view of the fact that tensor (18) for non-absorbing bianisotropic media possesses the
above-mentioned symmetry properties, it is not difficult to verify that for these media

N+
12 = N12 N+

21 = N21 N+
11 = N22. (22)

Thus, system (20) of the first-order differential equations describes the propagation of
monochromatic electromagnetic waves in stratified bianisotropic media. The fundamental
solution of this system can be presented in an evolution form by means of a product integral [21]

U(z) =
∫ 	z

z0

(E + ikN(z) dz)U(z0) (23)

where

E =
(

I 0
0 I

)
(24)

and U(z0) is a predetermined field vector in the plane z = z0. In a general case for arbitrary
profile of the inhomogeneity ε = ε(z), µ = µ(z), α = α(z), β = β(z) the solution of these
systems can only be found numerically.
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The system of equations (20) with matrix N, elements of which are introduced in the
manner of (21), is used for different branches of physics. It describes motion of linear straight
dislocations in solid bodies [9, 22] and propagation of elastic waves in stratified anisotropic
media. In the theory of surface acoustic waves the wave equations in the form (20), (21) were
first obtained by Stroh [16] and then used in the work of Ingebrigtsen and Tonning [23].

Thus, surface waves (acoustic and electromagnetic) are described by a system of
equations (20). The representation of wave equations in the form (20), (21) gives rise to
the integral approach of Barnett and Lothe [9, 10]. In the next sections we develop such
an approach for surface polaritons in non-absorbing bianisotropic media taking into account
planar structure of tensor (uv) (18) and symmetry properties (22) of the matrix elements
N11, N12, N21, N22.

3. Surface electromagnetic waves at the interface of bianisotropic media.
Dispersion equations

We consider propagation of surface electromagnetic waves with frequency ω along the plane
interface of two non-absorbing bianisotropic media, characterized by tensors ε(ω) = ε+(ω),
µ(ω) = µ+(ω), α(ω) = β+(ω) and ε′(ω) = ε′+(ω), µ′(ω) = µ′+(ω), α′(ω) = β ′+(ω),
respectively. Suppose that principal axes of these tensors, determined by their complex
eigenvectors, are arbitrarily oriented with respect to the interface. We align a coordinate plane
z = 0 with the boundary between the media. Hereinafter all symbols with a prime refer to
the medium with tensors ε′, µ′, α′, β ′, which is located in a half-space z > 0. Field distribution
in both media is represented by a superposition of two inhomogeneous partial waves. For
instance in the medium z < 0, we have

H(r, t) =
2∑

s=1

CsH
0
s exp[ik(b + ηsq)r − iωt] =

2∑
s=1

CsH
0
s exp

[
iω

(
1

c
msr − t

)]
(25)

E(r, t) =
2∑

s=1

CsE
0
s exp[ik(b + ηsq)r − iωt] =

2∑
s=1

CsE
0
s exp

[
iω

(
1

c
msr − t

)]
(26)

where as above q is the unit normal to the boundary directed along the z axis; a unit vector b

(bq = 0) determines the propagation direction of the wave along the boundary; H0
s , E0

s are
the vector amplitudes of the partial waves and Cs are weight factors. Complex coefficients ηs

characterize decay of the surface wave when moving away from the interface, and Im ηs < 0.
In (26) ms are the complex refraction vectors [20] of inhomogeneous partial waves:

ms = 1

ν
(b + ηsq) s = 1, 2 (27)

where reduced frequency ν = ω/(ck) represents phase velocity of the surface wave in units
of c (velocity of light in vacuum). Fields H ′(r, t), E′(r, t) in the second medium (z > 0) are
also described by equations of type (26) with the change of symbols H0

s , E0
s , Cs, ηs, ms to

the same with a prime. Here the decay coefficients η′
s are subject to the condition Im η′

s > 0.
Quantities ηs are found from the Fresnel equation for bianisotropic media [20]

det[µ−1(m× − α+)ε−1(m× + α) + 1] = 0 with the vector m substituted in form (27).
Quantities η′

s are found from an analogous equation with tensors ε′, µ′, α′. This is a fourth-
order algebraic equation with respect to η with coefficients depending on ν.

If parameter ν does not exceed a value νL, called the limiting frequency [12], then
roots ηj (j = 1, . . . , 4) of the Fresnel equation are pairs of complex conjugate numbers
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Figure 1. Determination of limiting frequency νL using the refraction surface section.

(in equation (26) we use only these with negative imaginary part). It is convenient to find the
limiting frequency νL geometrically using the refraction surface section (the surface of the
refraction indices for partial waves) by the plane passing through vectors b and q. Let L be
a straight line parallel to vector q and originally located at infinity, which moves towards −b
until the first contact with section curve S2 of the outer sheet of the refraction surface (figure 1).
Then the limiting frequency νL is reciprocal to the distance from the reference point O to the
line L, passing through point of tangency P. When ν = νL both roots ηi of the Fresnel equation
become real (or all four roots if there are two points of tangency) and correspond to the body
partial waves with the refraction vectors mL.

Usually for derivation of the dispersion equations k = k(ω) for surface electromagnetic
waves, it is necessary to first find the amplitudes of the partial waves and then use boundary
conditions for tangential components of these amplitudes. In the case under consideration the
amplitudes H0

s , E0
s satisfy the equations[

µ−1
(
m×

s − α+
)
ε−1

(
m×

s + α
)

+ 1
]
H0

s = 0

E0
s = −ε−1

(
m×

s − α+
)
H0

s s = 1, 2

(similar equations are valid for H ′0
s , E′0

s ). Boundary conditions are written in the form

H0
τ = H ′0

τ q × E0 = q × E′0 (28)

where

H0
τ =

2∑
s=1

CsH
0
sτ q × E0 =

2∑
s=1

Csq × E0
s

H ′0
τ =

2∑
s=1

C ′
sH

′0
sτ q × E′0 =

2∑
s=1

C ′
sq × E′0

s .

(29)

From equations (28) and (29) factors Cs , C ′
s can be excluded and as a result we get the

dispersion equation in the form of F(ν) = 0. Its solution ν = νS will describe the surface
wave only if 0 < νS < ν̂L, where ν̂L = min(νL, ν ′

L) is the least of the limiting frequencies for
two contacting media.



5090 V M Galynsky et al

A different way of obtaining the dispersion equation is by using the surface impedance
tensors in the boundary conditions. Planar surface impedance tensors γ and γ ′ connect the
tangential components of electric and magnetic fields on the boundary [18]:

q × E0 = γH0
τ q × E′0 = γ ′H ′0

τ . (30)

Eliminating vectors H ′0
τ , q × E0, q × E′0 from (28) and (30), we find

(γ − γ ′)H0
τ = 0. (31)

Non-zero vector H0
τ satisfies equation (31) only if the determinant of tensor γ −γ ′ (considered

as a tensor in two-dimensional space of the interface plane) vanishes. In a three-dimensional
space this corresponds to vanishing of the trace of the tensor adjoined to γ − γ ′ [20]:

(γ − γ ′)t = 0. (32)

Tensors γ and γ ′ depend on ν, and relation (32) is the dispersion equation for the surface
waves. In the next section a derivation of the surface impedance tensors γ and γ ′ based on
the representation of the wave equations in the form (20), (21) is given.

4. Integral representation of surface impedance tensors

We introduce vectors

Uj =
(

H0
jτ

q × E0
j

)
constructed from the tangential amplitude components of partial waves in the medium
z < 0. These vectors correspond to the complex-conjugate pairs of decay coefficients
ηj = η∗

5−j , j = 1, . . . , 4 (0 � ν < νL) and belong to the four-dimensional amplitude
space, being a direct sum of the two-dimensional spaces orthogonal to the vector q. Taking
into account (26), system (20) takes the form

NUj = ηjUj (33)

where matrix N does not depend on z and is a function of tensors ε, µ, α and β. Thus,
Uj are right eigenvectors of the matrix N in the amplitude space, and ηj are corresponding
eigenvalues. In view of relations (22), we find that

T N = N+T (34)

where

T =
(

0 I

I 0

)
.

Now introduce vectors Wj = T U5−j , j = 1, . . . , 4. From (33) and (34) it follows that W +
j

are left eigenvectors of the matrix N:

W +
j N = ηjW

+
j .

If all the eigenvalues ηj are different, then vectors Uj and W +
i (i �= j) are biorthogonal:

W +
i Uj = 0. These vectors can be normalized

W +
i Uj = δij i, j = 1, . . . , 4 (35)

where δij is a Kronecker delta. Thus, vectors Uj form a basis in the amplitude space, and
vectors Wj form the adjoined basis. The completeness condition is written in the form

4∑
j=1

Uj ⊗ W +
j = E (36)
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where E (24) is an identical operator in the amplitude space. For tangential amplitude
components of the partial waves, equations (35) and (36) take the form

H0
jτ

(
q × E0∗

5−i

)
+ H0∗

5−iτ

(
q × E0

j

) = δij i, j = 1, . . . , 4

and
4∑

j=1

H0
jτ ⊗ (

q × E0∗
5−j

) = I

4∑
j=1

H0
jτ ⊗ H0∗

5−jτ = 0

4∑
j=1

(
q × E0

j

) ⊗ (
q × E0∗

5−j

) = 0.

Now consider matrix

N(φ) = −
(

(e2e2)
−(e2e1) (e2e2)

−

(e1e2)(e2e2)
−(e2e1) − (e1e1) (e1e2)(e2e2)

−

)
where elements are tensors (18) with vector arguments

e1 = b cos φ + q sin φ e2 = −b sin φ + q cos φ. (37)

Its eigenvectors and eigenvalues depend on φ:

N(φ)Uj (φ) = ηj (φ)Uj (φ) W +
j (φ)N(φ) = ηj (φ)W +

j (φ) (38)

and W +
i (φ)Uj (φ) = δij . At φ = 0 matrix N(φ) coincides with the matrix N of system (20),

and its eigenvectors and eigenvalues coincide with the quantities Uj ,Wj and ηj which describe
real physical fields. It is important that

dN(φ)

dφ
= −{E + [N(φ)]2}. (39)

Formula (39) is checked directly by calculation and comparison of the expressions on its
left-hand and right-hand sides. Note that to calculate the derivative dN(φ)/dφ, we take into
account relations

de1

dφ
= e2

de2

dφ
= −e1

d(uv)

dφ
=

(
du

dφ
v

)
+

(
u

dv

dφ

)
d(e2e2)

−

dφ
= −(e2e2)

− d(e2e2)

dφ
(e2e2)

−.

The last of these equations can be obtained by differentiation of the equation (e2e2)(e2e2)
− =

I with respect to φ .
Differentiating both parts of the first equation (38) with respect to φ and taking into

account (39) gives

[N(φ) − ηj (φ)E]
dUj(φ)

dφ
=

[
dηj (φ)

dφ
+ 1 + η2

j (φ)

]
Uj(φ). (40)

Then multiplying equation (40) from the left by vector W +
j (φ), we obtain

dηj (φ)

dφ
= −1 − η2

j (φ) (41)

N(φ)
dUj(φ)

dφ
= ηj (φ)

dUj(φ)

dφ
. (42)

It is obvious that dUj(φ)/dφ is a right eigenvector of the matrix N(φ) with the same eigenvalue
as that for eigenvector Uj(φ). Suppose that all eigenvalues ηj (φ) are different and eigenvectors
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Uj(φ) generate one-dimensional eigensubspaces (there is no degeneracy of eigenvalues), we
have dUj(φ)/dφ = fj (φ)Uj (φ), where fj (φ) are some scalar functions. Thus when φ

is changed, vectors Uj(φ) preserve their ‘direction’. Since they are normalized, they also
preserve their ‘length’, i.e. they do not depend on φ. So in equations (38) it is possible
to replace Uj(φ),Wj (φ) by vectors of the partial wave amplitudes Uj = Uj(0),Wj = Wj(0)

and then average over φ

NUj = pjUj N =
(

S Q

B S+

)
(43)

where pj = 1

π

∫ π

0
ηj (φ) dφ, and elements of matrix N equal

S = − 1

π

∫ π

0
(e2e2)

−(e2e1) dφ Q = − 1

π

∫ π

0
(e2e2)

− dφ (44)

B = − 1

π

∫ π

0
[(e1e2)(e2e2)

−(e2e1) − (e1e1)] dφ. (45)

Solving differential equations (41) under initial conditions ηj (0) = ηj , we find that values
pj equal −i or i depending on the sign of the imaginary part of ηj (negative or positive).
Equation (26) includes decay coefficients η1, η2 with negative imaginary part, so we have

NU1,2 = −iU1,2 NU3,4 = iU3,4. (46)

The first equation (46) is satisfied not only by the vectors U1 and U2 (amplitudes of the partial
waves), but also by any linear combination of these vectors. Taking into consideration (29)
and (30), we find(

S Q

B S+

) (
H0

τ

νγH0
τ

)
= −i

(
H0

τ

νγH0
τ

)
(47)

whence

(iI + S + νQγ )H0
τ = 0. (48)

Formula (48) is derived from the system of wave equations (33) under the condition 0 � ν < νL

and boundary conditions have not been used for its derivation. Consequently, equation (48) is
valid for any predetermined tangential component Hτ of the magnetic field on the boundary.
This means that iI + S + νQγ = 0 and the surface impedance tensor equals

γ = 1

ν
Q−(−iI − S). (49)

Equations (47)–(49) were obtained under the assumption that eigenvalues ηj of the matrix
N are different. It is possible to show that these equations are also true in the presence of the
degeneracy (η1 = η2).

The surface impedance tensor γ ′ for the second medium z > 0 can be calculated similarly
as

γ ′ = 1

ν
Q′−(iI − S ′) (50)

under the condition 0 � ν < ν ′
L. Here, unlike (49), the projective tensor I is multiplied by

+i since Im η′
1,2 > 0. Tensors S ′ and Q′ have an integral representation (44) with the bilinear

tensorial forms (18) where ε −→ ε′, µ −→ µ′, α −→ α′, β −→ β ′.
Let us multiply equations (46) from the left by the matrix N

N 2Uj = −Uj j = 1, . . . , 4. (51)
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Vectors U1, U2, U3, U4 form a basis in the amplitude space, and from (51) it follows that
matrix N 2 coincides with −E. Using representations (24) and (43) for matrices E and N , we
conclude that S,Q and B satisfy tensor equations

S2 + QB + I = 0 BS + S+B = 0 SQ + QS+ = 0.

The last of these equations multiplied from the left and from the right by Q− takes the
form Q−S + S+Q− = 0. Therefore, it is easy to check that the surface impedance tensor
γ (49) is anti-Hermitian γ + = −γ (it is also true for tensor γ ′ (50)). The anti-Hermitian
property of tensors γ and γ ′ indicates that in any point of contacting media, the time averaged
Poynting vector S is parallel to the boundary. Truly, tensor γ connects not only tangential
field component H0

τ and q × E0 at the interface, but also tangential component Hτ (z) and
q ×E(z) for any point z = qr < 0, since the nature of dependences Hτ (z) and q ×E(z) on z

is the same (see (26)). As a result it appears that energy flow of the wave is absent towards q:

qS = c

16π
q[E(z) × H∗(z) + E∗(z) × H(z)]

= c

16π
[H∗

τ (z)(q × E(z)) + (q × E∗(z))Hτ (z)]

= c

16π
H∗

τ (z)(γ + γ +)Hτ (z) = 0.

5. Surface electromagnetic waves at the interface of bianisotropic and isotropic media

As an illustrative example of the method presented above, we consider the interface of
bianisotropic and isotropic media and investigate the existence conditions of the surface
electromagnetic waves.

Let an isotropic medium with inverse dielectric permittivity tensor ε′−1 = a′1 (where a′

is inverse scalar permittivity) occupy upper half-space z > 0, and a bianisotropic medium
characterized by material tensors

ε−1 = a1 + (b − a)q ⊗ q µ = µ1 α = β = igq× (52)

where a = 1/ε⊥, b = 1/ε||, occupies lower half-space z < 0. Medium (52) corresponds to
the crystals of symmetry classes 3 m, 4 mm and 6 mm. We consider the case of optical axis
perpendicular to the boundary. Then tensors (e2e2), (e1e1) take the form

(e2e1) = {−iagν + [b − a − (µ − ag2)ν2]cos φ sin φ}a ⊗ a

+
µν2

a − µν2
[iagν + (µ − ag2)ν2 cos φ sin φ]b ⊗ b (53)

(e2e2) = {−a cos2 φ − [b − (µ − ag2)ν2]sin2 φ}a ⊗ a

+
µν2

a − µν2
{a cos2 φ + [a − (µ − ag2)ν2]sin2 φ}b ⊗ b. (54)

Now we calculate pseudoinverse tensor (e2e2)
−:

(e2e2)
− = −1

a cos2 φ + [b − (µ − ag2)ν2] sin2 φ
a ⊗ a

+
a − µν2

µν2{a cos2 φ + [a − (µ − ag2)ν2] sin2 φ}b ⊗ b (55)
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and product of tensors (e2e2)
− and (e2e1):

(e2e2)
−(e2e1) = iagν − [b − a − (µ − ag2)ν2]cos φ sin φ

a cos2 φ + [b − (µ − ag2)ν2]sin2 φ
a ⊗ a

+
iagν + (µ − ag2)ν2 cos φ sin φ

a cos2 φ + [a − (µ − ag2)ν2]sin2 φ
b ⊗ b. (56)

Clearly, tensors Q and S (44) are expressed in terms of integrals

J(1;2) = 1

π

∫ π

0

(1; cos φ sin φ) dφ

k1 cos2 φ + k2 sin2 φ
. (57)

Integral J2 equals zero and J1 = 1/(
√

k1k2). Next, substituting formulae (55) and (56) into
(44) yields expressions for Q and S:

Q = 1√
a[b − (µ − ag2)ν2]

a ⊗ a − a − µν2

µν2
√

a[a − (µ − ag2)ν2]
b ⊗ b (58)

S = −iagν√
a[b − (µ − ag2)ν2]

a ⊗ a +
−iagν√

a[a − (µ − ag2)ν2]
b ⊗ b. (59)

Finally from formulae (49), (58) and (59) we arrive at the following expression for the surface
impedance tensor

γ = iµν

a − µν2

{√
a[a − (µ − ag2)ν2] − agν

}
b ⊗ b

− i

ν

{√
a[b − (µ − ag2)ν2] − agν

}
a ⊗ a. (60)

Similarly it is possible to find γ ′ (50) for the isotropic medium occupying the upper half-space

γ ′ = −iν

√
a′

a′ − ν2
b ⊗ b +

i

ν

√
a′(a′ − ν2)a ⊗ a. (61)

Using surface impedance tensors (60) and (61), we get the dispersion equation:

F(ν) = 0 (62)

F(ν) =
{

µ

a − µν2

[√
a[a − (µ − ag2)ν2] − agν

]
+

√
a′

a′ − ν2

}

×{√
a[b − (µ − ag2)ν2] − agν +

√
a′(a′ − ν2)

}
. (63)

Solutions of the dispersion equation (62) exist if some conditions are valid.
Namely, for a positive crystal a > b, we have

• for given a, b, g parameter a′ must satisfy the condition

b/µ < a′ � b +
√

b[b − 4a2g2(µ − ag2)]

2(µ − ag2)
(64)

• for given a, b, a′(a′ > b/µ′) parameter g must satisfy the condition

a′(µa′ − b)

a(ab + a′2)
� g2 < µ/a. (65)
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For a negative crystal a < b, we have more complicated conditions:

• for given a, b, g parameter a′ must satisfy the condition

b/µ < a′ � a +
√

A1

2(µ − ag2)
(66)

A1 = a2 − 8a2g
√

b − a(µ − ag2) + 4a(µ − ag2)[ag2(2a − b) + µ(b − a)] (67)

whence it is possible to obtain the condition for g.

When condition (64), (65) or (66) is satisfied, there exists an exact solution of the dispersion
equation (62)

ν2 = (a′2 − ab)(a′ − aµ) + 2a2a′2g + 2ag
√

aa′√ag2a′3 − (a′2 − ab)(a′µ − b)

(a′ − aµ)2 + 4a2a′g2
. (68)

For a natural material, the parameter g is much less than any component of the dielectric
permeability tensor. To satisfy the existence conditions of surface waves (64), (65) or (66),
it is necessary to choose contacting media so that b/µ and a′ should differ to a small extent.
For example, these media may be crystalline and amorphous forms of the same material, the
first possessing gyrotropic properties, but the second possessing none. Thus, their dielectric
permeabilities differ very little.

6. Conclusion

Analogously to anisotropic dielectric media [11, 12], the dispersion equation for surface
polaritons at the interface of bianisotropic media can be derived with the use of integral
representation of tensors Q,S (44) involved in the surface impedance tensors γ , γ ′ (49) and
(50). So we have a general method for analytical derivation of the dispersion equations for
bianisotropic media of any symmetry classes, the interface arbitrarily orientated with respect
to crystallographic axes. This method is essentially a consecutive calculation of tensor (e2e2),
(e2e1) (18) and (37) and then Q,S, γ (44) and (49) for each contacting medium.

Convenience of the proposed method lies in independent calculation of the surface
impedance tensors γ, γ ′ for each medium. Only at the last stage when these tensors are
substituted into equation (32) will the final dispersion equation be obtained. Thus, having
the surface impedance tensors (49) and (50) for n bianisotropic media (which may differ in
symmetry classes and/or in orientation of the plane boundary with respect to crystallographic
axes), we can immediately obtain n(n−1)/2 dispersion equations for each pair of such media.

In this paper we have derived the surface impedance tensor for bianisotropic media of
3 m, 4 mm and 6 mm symmetry classes in the case when the optical axis is perpendicular to the
boundary plane. We have obtained the corresponding dispersion equation for the boundary of
such media with isotropic ones. It is evident that analogous, if somewhat more complicated,
consideration can be carried out for the same materials but with optical axis arbitrarily oriented
with respect to the interface.
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